Millhouse Primary School and Nursery

Calculation Policy

Aims

At Millhouse Primary School and Nursery we ensure our approach to teaching the four rules is consistent and progressive throughout the key stages, allowing children to develop an efficient, reliable, formal written method of calculation for all operations. Children use these methods fluently and with confidence and understanding.

End of year age related expectations - ADDITION

	EYFS	Yr1	Yr2	Yr3	YR4	Yr5	Yr6
Addition	To understand that adding involves an increase/ more. To begin to use mathematical vocabulary involving addition (+) and the equal (=) sign. Relate addition to combining two	Read, write and interpret mathematical statements involving addition (+) and the equal (=) sign. Represent and use number bonds to 20. Add one-digit and two-digit numbers within 20, including zero.	Recall and use addition facts to 20 fluently and related facts to 100. Add numbers using concrete objects, pictorial representations and mentally, including: ones A two-digit number and tens Two	Add numbers with up to three digits, using formal written method of columnar addition.	Add numbers with up to 4 digits using the formal written method of columnar addition where appropriate.	Add whole numbers with more than 4 digits, including using formal written method (columnar addition).	No objectives have been included in the programmes of study explicitly related to written methods for addition in Yr6. However, there is an expectation that children will continue to practise and use the

	groups of objects; first by counting all and then by counting on from the largest number. Using objects and by counting on, add two single-digit numbers Find one more than a number from 1-5 then 1-10.	Solve missing number problems e.g. $7=\square+2$	two-digit numbers Thre e one-digit numbers.				formal written method for larger numbers and decimals and use these methods when solving problems.

At Millhouse Primary School and Nursery, we understand how vital it is to support our children to develop a true conceptual understanding of the four rules so that they can master the objectives of the new curriculum. Therefore models, images and practical resources are incorporated into the teaching of the four rules, so that children can secure their understanding, before applying their skills to formal written methods. The table below displays the progressive stages for teaching addition and practical resources and pictorial representations that can be used to consolidate understanding.

Addition

Strategies for teaching addition	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	ceeceecee 7 manm	Use a number track to count on from the largest number: $\begin{array}{\|llllllllll} 5+4=9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \end{array}$ $12+5=17$	$\begin{aligned} & 5+12= \\ & 12+5=17 \end{aligned}$ Place the larger number in your head and count on the smaller number

	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones, tens or in one jump to find the answer.	to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10, then count on.	Use pictures or a number line. Regroup or partition the smaller number to $3+9=$ make 10 (make links to the part whole model) and then count on. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7.		$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the

	Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit.		remainder.
Column method- no regrouping (no carrying)	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$
Column methodregrouping (carrying)	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	$\begin{array}{r} 536 \\ +85 \\ \hline \frac{621}{11} \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here. $\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \\ \hline 11 \end{array}$

End of year age related expectations - SUBTRACTION

	EYFS	Yr1	Yr2	Yr3	YR4	Yr5	Yr6
Subtraction	Find one less than a given number from 1-5, then 1-10. Begin to use mathematical vocabulary involving subtraction (-) and the equal \Leftrightarrow) sign. Begin to relate subtraction to 'taking away'. Using objects and by counting on or	Read, write and interpret mathematical statements involving addition (+) and the equal (=) sign. Represent and use number bonds and related subtraction facts within 20. Subtract onedigit and two-	Recall and use subtraction facts to 20 fluently and related facts to 100. Subtract numbers using concrete objects, pictorial representations and mentally, including: A two-digit number and ones A two-digit number and tens Two two-digit numbers	Subtract numbers with up to three digits, using formal written method of columnar subtraction.	Subtract numbers with up to 4 digits using the formal written method of columnar subtraction where appropriate.	Subtract whole numbers with more than 4 digits, including using formal written method (columnar subtraction).	No objectives have been included in the programmes of study explicitly related to written methods for subtraction in Yr6. However, there is an expectation that children will continue to practise and use the formal

Subtraction

| Strategies for
 teaching
 subtraction | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Taking away ones | | | |
| Use physical objects, counters,
 cubes etc to show how objects can
 be taken away. | Cross out drawn objects to show what has been
 taken away. | 8 18-3=15 | |

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	Compare amounts and objects to find the difference. $12-11=$ Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Draw number lines to count on and find the difference Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Whole Model	Link to additionuse the part whole model to help explain the inverse between addition and subtraction.	Use a pictorial representation of objects to show the part whole model.	

	If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$		Move to using numbers within the part whole model.
Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then take away one more so you have taken away 5. You are left with the answer of 9 .	$13-7=$ \square Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.		This will lead to a clear written column subtraction.


```
method links to the written
method alongside your working.
Cross out the numbers when
exchanging and show where we
write our new amount.
```

End of year age related expectations - MULTIPLICATION

	EYFS	Yr1	Yr2	Yr3	YR4	Yr5	Yr6
Multiplication	To begin to count in $2 s, 5 s$ and 10 s by recall and counting repeated groups of the same size (only once chn are confident at counting 1-20	Solve one-step problems involving multiplication by calculating the answer using physical objects, pictorial representations and arrays with	Recall and use multiplication facts for the 2, 5 and 10 multiplication tables. Calculate mathematical statements for multiplication	Recall and use multiplication facts for the 3, 4 and 8 multiplication tables. (Through doubling, connect the 2,4 and 8 multiplication	Recall multiplication facts for multiplication tables up to 12 $\times 12$. Multiply twodigit and three-digit numbers by a	Multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-digit	Multiply multidigit numbers up to 4 digits by a two digit whole number using the formal written method of long multiplication. Multiply one

	individually). To begin to solve problems involving doubling numbers 1-5, then 1-10, using fingers, cubes and beads etc.	the support of the teacher.	within the multiplication tables and write them using the multiplication (x) and equals $(=)$ signs. Show that multiplication of two numbers can be done in any order (commutative). Solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts.	tables). Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including twodigit numbers times one-digit numbers, using mental and progressing to a formal written method. (Short multiplication is not explicitly stated in the programmes of study but implied in the non-statutory guidance).	one-digit number using formal written layout.	numbers.	digit numbers with up to two decimal places by whole numbers.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Strategies for teaching multiplication \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities to show how to double a number. \& \begin{tabular}{l}
Draw pictures to show how to double a number.

Double 4 is 8
\square
\square

\square
\square
\square
\square

 \&

Partition a number and then double each part
\end{tabular}

\hline
\end{tabular}

Double 3 is 6			before recombining it back together.
Counting in multiples			Count in multiples of a number aloud.
			Write sequences with multiples of numbers.
			$5,10,15,20,25,30$
	Count in multiples supported by concrete objects in equal groups.		
	Three pairs of socks. How many socks altogether? $2,4,6 \ldots . . .$	Use a number line or pictures to continue support in counting in multiples.	

Repeated addition	$3+3+3$ objects to add equal groups．	 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures． Find missing numbers． 3 insects have \qquad legs $6+6+6=18$

Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. 6 cm 6 cm 6 cm How long is this red line?	Start with short multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{array}{r} 237 \\ \times \quad 4 \\ \hline 948 \end{array}$

End of year age related expectations - DIVISION

	EYFS	Yr1	y r2	yr3	YR4	Yr5	Yr6
Division	To begin to solve problems involving halving and sharing numbers up to 5,10 , using fingers, cubes and other practical equipment.	Solve one-step problems involving division by calculating the answer using physical objects, pictorial representations and arrays with the support of the teacher.	Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables. Calculate mathematical statements for division within the multiplication tables and write them using the division (\because) and equals (=) signs. Solve problems involving division, using materials, arrays,	Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers divided by onedigit numbers, using mental and progressing to a formal written	Recall multiplication and division facts for multiplication tables up to 12 $\times 12$. Divide twodigit and three-digit numbers by a one-digit number using formal written methods of short division (not explicitly stated in the programmes of study but implied in the non-statutory guidance).	Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.	Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where

| | | subtraction,
 mental
 methods, and
 multiplication
 and division
 facts, including
 problems in
 contexts. | methods.
 (Short division
 is not explicitly
 stated in the
 programmes of
 study but
 implied in the
 non-statutory
 guidance). | appropriate,
 interpreting
 reminders
 according to
 the context. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Strategies for teaching division	Concrete		Pictorial	Abstract
Division as sharing				
	I have 10 cubes, can you shale them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people.	

Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created.		Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

	$\begin{array}{rc} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3 r 1$ Draw dots and group them to divide an amount and clearly show a remainder. $14 \div 3=4 r 2$	Complete written divisions and show the remainder using r.

